
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

The Journal of Adhesion
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453635

Analysis of Critical Debonding Pressures of Stressed Thin Films in the
Blister Test
Mark G. Allena; Stephen D. Senturiaa

a Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA,
U.S.A.

To cite this Article Allen, Mark G. and Senturia, Stephen D.(1988) 'Analysis of Critical Debonding Pressures of Stressed
Thin Films in the Blister Test', The Journal of Adhesion, 25: 4, 303 — 315
To link to this Article: DOI: 10.1080/00218468808071269
URL: http://dx.doi.org/10.1080/00218468808071269

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453635
http://dx.doi.org/10.1080/00218468808071269
http://www.informaworld.com/terms-and-conditions-of-access.pdf


J .  Adhesion, 1988, Vol. 25, pp. 303-315 
Reprints available directly from the publisher 
Photocopying permitted by license only 
0 1988 Gordon and Breach Science Publishers, Inc. 
Printed in the United Kingdom 

Analysis of Critical Debonding 
Pressures of Stressed Thin Films 
in the Blister Test 

MARK G. ALLEN and STEPHEN D. SENTURIA 

Microsystems Technology Laboratories, Massachusetts Institute of 
Technology, Cambridge, MA 02139 U.S.A. 

(Received August 20, 1987; in final form February 11, 1988) 

This paper reports a model for the relationship between critical debonding pressures 
and the work of adhesion of thin films in the blister test. Previous models have 
neglected the possible role of residual stresses in the film on the critical pressure. The 
model reported here shows that these stresses may have a large effect on the relation 
between the critical pressure and the work of adhesion. A similar model is developed 
for an alternative blister geometry, the annular or “island” blister. It is shown that 
films which cannot be peeled using the standard blister test (due to exceeding the 
tensile strength limit of the film before initiating a debond) can be peeled by varying 
the geometric parameters of the island blister. 

KEY WORDS Adhesion; blister geometry; critical debonding pressure/work of 
adhesion relationship; island blister; peeling; residual stresses. 

INTRODUCTION 

The blister test for adhesion measurement was first reported in 1961 
by Dannenberg.’ More recently, the test has been used to measure 
the adhesion of polymer f i l r n ~ ~ . ~  and adhesive tapes.4 Much of this 
work . involves using fracture mechanics to relate the “critical 
pressure” (the pressure at which debond initiates) to the work of 
adhesion of the film or tape. However, the role of residual stresses 
in the films has often been neglected. Further, the blister test often 
fails for well-adhered thin films because the tensile strength of the 
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304 M. G.  ALLEN AND S. D. SENTURIA 

film is exceeded before peel is achieved. This paper reports, first, a 
model of the blister test using fracture mechanics which illustrates 
the effects of these residual stresses and, second, an analysis of 
alternative blister geometries which allow the peeling of films at 
lower pressures than in the standard blister geometry. 

FRACTURE MECHANICS METHOD 

The concept of using fracture mechanics in adhesive failure studies 
was proposed by Williams.’ In ordinary fracture mechanics, the 
effects of plastic deformation are important, since, except for ideally 
brittle materials, all materials undergo some yielding before frac- 
ture. However, in applying fracture mechanics to problems involv- 
ing adhesive failure, it is assumed that adhesive failure occurs at 
stresses much lower than those necessary to cause large-scale plastic 
yielding. Under these restrictions, linear elastic fracture mechanics 
may be applied. 

Consider a pressurized blister of film adhered to  a substrate as 
shown in Figure 1. Using a Griffith argument,6 during any virtual 
increment in crack area, the total energy of the peeling system must 
be constant. Differentially, this can be expressed as: 

6E = 6Il+ 6S = 0 

where II is the potential energy of deformation of the blister and S 
is the energy of forming new surface. Rearrangement of Eq. (1) 
yields: 

(1) 

6II = - y,SA (2) 
where yo is defined as the work of adhesion and 6A is an increment 

Pressure (p) 

Definition of blister parameters. FIGURE I 
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THE BLISTER TEST 305 

of crack area. Thus, if expressions for the potential energy of 
deformation of the blister can be obtained, the work of adhesion 
can be found by applying the peel criterion (2). 

The potential energy of the blister is related to both the blister 
load-deflection behavior (how the blister deforms in response to an 
applied load) and the blister geometry. Therefore, in order to apply 
Eq. (2), we have assumed various blister geometries and calculated 
the load-deflection behavior of each. The standard blister ge- 
ometries of interest in our work are a square of side length 2a and a 
circle of radius a. The films to be blistered can be treated as 
membranes (no resistance to bending) or as plates, and are 
characterized by a Young’s modulus E ,  a Poisson’s ratio v, and an 
in-plane residual stress uo. Many authors have taken up the subject 
of the load-deflection behavior of such plates and  membrane^.'-'^ 
We have applied the energy minimization methods of Timoshenko8 
and Way,’ but have modified them to include the possible contribu- 
tion of residual stresses to the film behavior. 

Using these methods, it is readily shown” that the load-deflection 
behavior of all three cases (square membrane, circular membrane, 
clamped circular plate) can be described by the equation: 

where p is the applied (uniform) pressure, d is the deflection of the 
blister at its geometric center, and k l ,  k2 ,  and k3 are functions of 
the geometry of the test site and of the type of film (plate or 
membrane). Equation (3) is the general load-deflection relation 
which will be used in the analysis of the blister potential energy, 

The values of the constants in Eq. (3) for the three cases 
examined here are given in Table I, assuming a Poisson’s ratio of 
0.25. Most of the constants are not very sensitive to Poisson’s ratio; 
for example, the value of kl  for the square membrane changes from 
1.83 to 2.05 when v changes from 0.25 to 0.35. The full dependence 
of the constants on Poisson’s ratio is given in the Appendix. 

Consider the flawed elastic body shown in Figure 2, where P is 
some generalized load-point force acting on the body and A is the 
corresponding work-conjugate displacement through which the 
body moves.6 The potential energy of deformation can be related to 
these generalized loads and displacements by: 

(4a) 

p = kld3  + ( k Z  + k3)d (3) 

II = V - P A  = -V* for dead loading (prescribed P )  
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TABLE I 
Geometric constants for adhesion model 

Square 
membrane" 

1.83Et/a4 
0 

n4to,/64a2 
0.429Et 

0 
nto 1512 
16aPd/n2 

1/2d 

Clamped 
circular 
platea 

2.7'7Et/a4 
6 4 ~ / a ~ ~  
4ta,/a2 
2.42Et 

192Dln 
12ta, /n 
a 2 d x / 3  
112xa 

Circular 
membraneb 

3.56Et/a4 
0 

4to,/a2 
0.917Et 

0 
8rl7,ln 
a 2 d n / 2  
1/2na 

a k values taken from Timoshenko analysis of 
plate/membrane under zero residual stress,' extended to 
account for residual stress. 

k values taken from Beams.'" 
Assumes a value of Poisson's ratio of 0.25. 
D = plate flexural rigidity = Et3/12(1 - v2) ,  v = 

Assumes incrementally symmetric peel. 
Poisson's ratio. 

or 

I I = V  for fixed-grip loading (prescribed A) 
(4b) 

where V and V *  are the strain energy and complimentary strain 
energy of the body, respectively. Substitution of these relations into 
Eq. (2) yields: 

(fixed load) 

a. 
FIGURE 2 A cracked anti loaded structure. 
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THE BLISTER TEST 307 

or 

(fixed grips) 

where a is the crack length (in this case, the blister size) and A is 
the crack area. It can be shown6 that expressions (5a) and (5b) are 
mathematically equivalent to first order. 

For the case of lateral load uniformly distributed over a thin plate 
or membrane (ratio of film thickness t to blister size a << l), the 
work-conjugate force and displacement are related to the actual 
load and deflection by: 

P = p  

A = w(r)d2r I, 
where p is the blister pressure, w(r )  is the blister deflection at 
position r due to that pressure (note that d as defined in Eq. (3) is 
the same as w(O)), and A is the blister area. Equation (3) can now 
be written in terms of the generalized work-conjugate force and 
displacement: 

P = B1A3 + B2A (7) 
where B1 and B2 are functions of geometry, but not of P or A. The 
strain energy is then given by: 

PA 

V = b  P ( A ) d A + V ,  

where V ,  is the strain energy due to the residual stresses and strains. 
For the case of the blister under residual tensile stress, increasing 
crack size (a) does not change V,. This is because as long as the 
edges of the film are attached to the substrate, relaxation of the 
residual stress cannot occur. Therefore, although the residual stress 
and strain affect the peel criterion through the load-deflection 
behavior, the energy balance need consider only the elastic strain 
energy stored in the blister. Note that this assumption is not valid 
for films under compressive stress, which may undergo stress 
relaxation by buckling once they have debonded from their 
substrates.” The assumption is also invalid if the blister substrate is 
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308 M. G. ALLEN AND S.  D. SENTURIA 

not infinitely rigid. For example, it is known that films on a thin 
silicon substrate can cause the substrate to curve; a common 
technique to determine the magnitude of the residual stress in a film 
is to measure this curvature. In a structure such as this, blister 
peeling can allow some substrate relaxation, causing V, to decrease 
as the blister size increases, effectively lowering the critical peel 
pressure. For the balance of this derivation, an infinitely rigid 
substrate will be assumed. 

Applying the energy balance by substitution of Eq. (8) into Eq. 
(5b) yields the final peel criterion: 

(9) 

where daldA is the incremental dependence of blister size on blister 
area, and cl, c2, and c3 are constants which depend on the 
mechanical properties of the film. Table I gives the values of the 
various parameters in Eqs (3) and (9) for three blister geometries, 
assuming a value of Poisson’s ratio of 0.25. As with the load- 
deflection relations, the dependence of the parameters on Poisson’s 
ratio is a relatively small effect; equations to calculate the para- 
meters for an arbitrary Poisson’s ratio are given in the Appendix. by 
substitution of the appropriate values from Table 1 or the Appendix 
into Eq. (9), and simultaneous solution of (9) with the correspond- 
ing load-deflection relation (3), a value for ya can be determined as 
a function of the critical debond pressure p c .  

It should be noted that the constants depend on both the modulus 
and residual stress of the film. Therefore, with the exception of 
some limiting cases discussed in the following section, experimental 
measurement of p c  cannot be related to yo unless the mechanical 
properties of the film have been accurately determined. 

APPLICATION OF THE MODEL 

Under certain limiting conditions, Eq. (9) reduces to special cases 
which have been previously reported in the literature. For example, 
in the case of a clamped circular plate with zero residual stress 
undergoing small deflections, (cl = c3 = 0) Eq. (9) becomes identical 
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THE BLISTER TEST 309 

to that of Williams:' 
Y u  = 0.5Pcdc 

where dc is the deflection at the center of the plate at pressure pc. 
Alternatively, for the case of a circular membrane undergoing large 
deflections with zero residual stress, (cz = c3 = 0) Eq. (9) becomes: 

yu = 0.625p,dc (11) 
Gent4 has also analyzed this case and has obtained a value of 0.65 
for the premultiplying factor in Eq. (11), due to the assumption of 
slightly different load-deflection behavior. 

In order to illustrate the effect of the residual stress, we will 
consider a circular membrane undergoing large deflections which is 
under varying degrees of residual stresses. In this case, substitution 
of the appropriate parameters from Table I into Eq. (3) yields: 

Et 4Uot 
pc = 3.567 d;  + -dc 

a a' 

which has been obtained by Beams" assuming a Poisson's ratio of 
0.25. Corresponding substitution of parameters into Eq. (9) yields: 

yu = 2.22Et(d,/~)~ + 2.OO~~t(d~/a)~ (13) 
The relation between ya and pc can be obtained by simultaneous 

solution of Eqs (12) and (13). The results of this solution are 
presented in Figure 3, a logarithmic plot of the work of adhesion 
(normalized by the film modulus and thickness) versus critical 
pressure (normalized by blister size, film modulus and film thick- 
ness) for various residual stresses. As can be seen, for zero residual 
stress, a slope of 4/3 is obtained, agreeing with the derivation of 
Gent.4 As the residual stress is increased the adhesive energy 
corresponding to a given critical pressure decreases; this is due to 
energy expended in deflecting the film against the residual stress. At 
high enough stress, the slope of the critical pressure relation 
becomes equal to 2. This corresponds to a linear load-deflection 
relation (with the cubic term in Eq. (12) being negligible), and thus 
leads to the same functional form as a blister undergoing small 
deflections (where the load-deflection relation is also linear) .5 

Finally, at large pressures, the effect of the residual stress on the 
critical pressure becomes small since the load-deflection relation is 
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-2 

-4 

-6 

-4 -3 -2 -1 

P a  
E t  
- Normalized Critical Pressure 

FIGURE 3 A log-log plot of the work of adhesion of a film (normalized by the 
thickness and Young’s modulus of the film) as a function of the critical pressure of a 
blister (normalized by the blister size and by the thickness and Young’s modulus of 
the a m ) ,  parameterized by the residual stress in the film (normalized by the Young’s 
modulus of the film). 

dominated by stretching against the modulus (with the linear term 
in Eq. (12) being negligible). 

We now present a numerical example based on polyimide films 
used in our work. Typical valued3 of the various parameters in Eqs 
(12) and (13) are: 

E = 3 G P a  
a, = 30 MPa 

t = l O p m  
a=5000pm 
v = 0.25 

Suppose the critical pressure for such a film is measured to be 10 psi 
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THE BLISTER TEST 311 

(69 x lo3 Pa). Neglecting the residual stress, a standard analysis 
would yield a value for ya of 32 J/m2. In contrast, taking into 
account the residual stress leads to a value of ya of 24 J/m2. 
Neglecting the stress has led to an overestimation of ya of 32%. This 
energy went into deflecting against the residual stress instead of 
debonding. 

Another calculation which can be performed is the tensile 
strength limit. Suppose the above film has an effective ultimate 
strain of 2%. For a spherical cap, it can be easily shown that the 
maximum center deflection can be related to the ultimate strain E , , ~  

by Ref. 2: 

( d / a ) L ,  = 1 . 5 ~ i t  (14) 
Taking into account the already present intrinisc strain (and 
assuming a Poisson’s ratio of 0.25), the maximum deflection which 
can be sustained is 685 pm, corresponding to a critical pressure of 
12.7 psi (87.8 x lo3 Pa) and a work of adhesion of 35 J/m2. Greater 
values of the work of adhesion cannot be measured using the above 
geometric and film parameters, due to the tensile strength limit of 
the film. This problem can be overcome by using thicker films; this 
has been done for the peel test.I4 In the blister test, we have 
additional flexibility. Different geometries are possible which can 
facilitate peel of thinner films even in systems with very good 
adhesion. These are examined in the following section. 

ISLAND BLISTERS 

Equation (9) suggests that if a geometry can be found in which 
daldA can be increased without simultaneously decreasing dV* /da 
(see Eq. ( 5 ) ) ,  larger values of ya may be measured at the same load. 
For simple blisters, this derivative is inversely proportional to the 
membrane size (Table I). 

Decreasing the membrane size fails since the deflection A will 
also decrease. However, consider an annular “island” structure of 
outer radius a2 and inner radius al as shown in Figure 4. The 
blistering will now occur only off the center island. The deflection A 
(and therefore V*) of this blister is a function of the difference 
a2 - a,, which changes only slightly during peel. The derivative 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
5
:
2
9
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1
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film radius a 

p = a 2 / a ,  
FIGURE 4 Island blister structure. 

da/dA,  however, is inversely proportional only to a,. Thus, a large 
geometric advantage can be obtained by decreasing a, (large 
du/dA)  while keeping a, - a l  large (large A at the same P). 

The critical pressure analysis of this structure proceeds as above. 
The load-deflection behavior is considerably more complicated; 
however, an approximate solution can be obtained by considering 
the case of residual stress dominated behavior. In this case, the 
membrane equation” can be integrated using annular boundary 
conditions (zero film deflection at al  and az) to yield: 

where p is the (uniform) pressure on the annular film and a’ is a 
“logarithmic square mean” defined by: 

Integrating Eq. (15) over the area of the deflected annulus yields 
the volume A. Since the load-deflection relation is assumed to be 
linear (stress-dominated), the strain energy and complimentary 
strain energy are equal and are given by: 

V = V *  = 0.5PA (17) 
Applying Eq. (5a) yields the critical pressure relationship: 

p:a: p”1 2 

‘ya = -[ - - 21 
32u0t 1n p 
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THE BLISTER TEST 313 

where /3 is defined as the annular ratio u2/u1. Although approxi- 
mate, it is instructive to examine the limiting behavior of Eq. (18). As 
/3 approaches unity, yo approaches zero (since no film is exposed, no 
adhesion can be measured even at infinite pressure), while as /3 
approaches infinity, yo becomes large for any pressure pc .  Thus, it is 
theoretically possible to measure large ya values at pressures which 
do not exceed the ultimate tensile stress of the film by making the 
center island sufficiently small. 

For example, consider the same film as above, this time adhered 
to a substrate with a value of ya of 100 J/m2. Also assume that the 
maximum pressure we wish to subject the film to is 1Opsi 
(69 X lo3 Pa). From Eq. (18), the value of ul necessary to achieve 
peel of this system is 850pm, or an island diameter of 1.7mm. 
Using an island blister, the tensile strength limit of the above film 
can be overcome geometrically. Experimental confirmation of the 
utility of the island structure is being reported separately. 

CONCLUSIONS 

It has been demonstrated for the classical blister test that the effect 
of the residual stress in the film may drastically affect the critical 
pressure-work of adhesion relationship used to analyze adhesion 
data. In addition, a blister structure for overcoming the tensile 
strength limit of peeling thin films, the annular or “island” 
structure, has been proposed. The cirtical pressure-work of 
adhesion relationship has been derived for this structure using the 
methods outlined for the classical blister test. The resulting equa- 
tion indicates that peel of thin films can be initiated at any 
conveniently low pressure by varying the geometric factor /3, the 
ratio of the outer to inner radii of the film annulus. 
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Appendix 

The explicit dependence of the various constants of the adhesion 
model on Poisson’s ratio is given below. The constant k3 (repre- 
senting the residual stress component) does not have a Poisson’s 
ratio dependence, while the constant k2 (representing the bending 
component) is related to the plate flexural rigidity, thereby having a 
known Poisson’s ratio dependence. Thus, only k l  (and therefore cl) 
has a Poisson’s ratio dependence to be determined. The kl  
dependence for each of the three cases of interest is given by the 
following equations: 

Square membrane: 

k l =  

Clamped circular plate: 

3 
kl=- [1.221- 7.848 x 10-3(6 - ~ ) ( l +  l l v )  

1 - v 2  
Et 

-8.965 X 10-3(23 - 41~) (1 .98  - v)] 7 
a 

Circular membrane: 

8 Et k 
3(1- V)  a4 1 -  

and the relationship between k ,  and c1 is given by: 
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